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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1690

A CONTRIBUTION TO THE THEORY OF FOLDING
DEFORMATIONS IN EXPANDABLE STRUCTURES WITH
A PARTICULAR APPLICATION TO TOROIDAL SHELLS

By H. U. Schuerch and G. M. Schindler

Astro Research Corporation
Santa Barbara, California

SUMMARY

‘ Outlines for a theory of large deformations, including folding,
of arbitrary inextensible membranes are presented. The approach
to the problem utilizes isometric mapping techniques complemented
by the additional topological constraints of the folding problem in
real membrane structuref) The theory is applied to an inextensible
membrane in the form of a torus. Rigorous solutions are found for
a particular class of deformations. Theoretical results are veri-
fied, qualitatively, by realization of predicted folding patterns on
two torus models. j" i
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INTRODUCTION

Expandable pneumatic structures, i.e., structures that can be
packaged into small volumes and erected by inflation into relatively
rigid devices, have been considered for a number of space missions.
Of particular interest is the design of expandable large sized manned
orbital space laboratories in the form of a modified torus, either
partially or fully constructed from flexible materials.

Other examples where expandable structures can find applica-
tions are the large surfaces required for reflectors of electromag-
netic radiation (Echo satellite), collectors for solar energy, and




expanding and retracting devices for manipulation of instruments dur-
ing flight or re-entry, or for operations after landing on foreign ce-
lestial bodies. '

In many of these applications the operating pressure and/or the
size of the expandable structure is such that considerable structural
forces arise from pressurization. This requires a wall construction
which is strong and, as a consequence, stiff, at least in directions
tangential to the surface. Thus, while optimum design and materi-
als selection may result in a thin walled strong shell that retains suf-
ficient bending compliance to allow relatively sharp bending radii,
these designs exhibit normally sufficient membrane stiffness to limit
the membrane strains to small values. As a limiting case, such
structures can be considered as inextensible but completely flexible
membranes.

A theory of "momentless' (i.e., flexible) shells with a detailed
discussion of their inextensible deformation characteristics is pre-
sented, for instance, in reference 1. The discussion in reference 1
is limited, however, to shells of revolution and concerns itself pri-
marily with infinitesimally small deformations in the normal sense
of the theory of elastic structures. For the purpose of an analytical
treatment of the packaging and folding problem of expandable struc-
tures a more general theory is required. Such a theory can be de-
veloped based upon isometric mapping techniques (references 2, 3,
and 4).

This research has been performed with the support of the Na-
tional Aeronautics and Space Administration.

SYMBOLS
EF,G Gaussian coefficients of the first fundamental
form
R radius of circumferential center line of torus
S surface

i

radius vector



f,g.h,k auxiliary functions of (u, v)

n integer

P deformation parameter

u, v curvilinear surface coordinates

X,V, 2 Cartesian coordinates

A direction of propagation on surface

P radius of meridonal circular torus section

The superscript * refers to functions of the deformed surface.
Subscripts in parentheses, such as X refer to the variable
of a function X.

() ’

Plain subscripts, such as Xu , indicate a partial derivative of

the function X with respect to the variable u

GENERAL CRITERIA FOR DEFORMATION OF
INEXTENSIBLE MEMBRANES

Consider a thin walled structural shell. Its shape can be de-
scribed by a neutral surface S located between the two faces of the
shell. Assume that the neutral surface admits no membrane strains
in tangential direction and that the shell is completely compliant in
bending. Such a structural shape will be described as an inextensible
membrane.

Let the neutral surface S be deformed continuously into a con-

ate
%
secutive set of new surfaces S where p is a continuously vary-

(p)

ing parameter. For the corresponding inextensional membranes to
be deformable into the consecutive shapes described by the paramet-

ric set of surfaces S , the following conditions need to be satis-
fied:




E
(a) All surfaces of the set S must be isometric with S ,

e

i. e,, the transformation S - s must retain all lengths (and, conse-
quently, all angles) on the entire surface. Isometry of transforma-
tion satisfies the condition of zero membrane strain required by in-
extensible membranes.

(b) In the domains where the original surface S is continuous,

the surfaces of the set s must also be continuous. It will not be

required, however, that the derivatives of the surfaces S be con-
tinuous at all points. Thus, the deformation may involve ridges and/
or folds along certain lines that may either be fixed on the surface or
traveling over the surface with a variation of the deformation param-
eter p . The admission of slope discontinuities for the deformation
of membranes constitutes a departure from the usual conventions of
deformations in thin shells. For instance, closed analytical sur-
faces of continuously positive curvature (egg-surfaces) are normally
considered as rigid (references 2 and 4). This is true only if defor-
mations involving slope discontinuities are excluded.

ot
=

(c) The topological characteristics of the surfaces S must be
equal to the topological characteristics of the original surface S
This refers particularly to the surface connectivity (genus) and sur-
face orientation (insides of closed surfaces must remain inside).

The condition of invariant connectivity excludes, for in-
stance, the case of mapping a closed, periodic surface upon an infin-
itely extended open surface. An example of this is given in the map-
ping of a torus upon a corrugated tube, discussed in the section "Iso-
metric Deformation of a Circular Torus."

The topological condition of surface orientation must be ap-
plied to exclude those deformations which, while isometric and con-
tinuous, would require the membrane to change sides by mutual per-
meation.

An example of admissible and inadmissible isometric deforma-
tions generated by reflection of the surface on intersecting planes
and involving ridge formation is shown in figure 1.




BASIC EQUATIONS FOR ISOMETRIC
DEFORMATION OF SURFACES

Let the inextensible membrane in consideration be represented
by its neutral surface S . Its analytical expression may be given
by the vector extending from an origin 0 to a point P on

X

(u, v) ,
the surface and referred to the three dimensional Euclidian system
of coordinates (x,y,z) as shown in figure 2.

The parameters u and v describe a parameter net of curvi-
linear coordinates u = Constant and v = Constant on the surface
S . The vector X can be written in terms of its components
as follows: (v, v)

*(w, v)
— _ )
Yov 7| T W
“(u, v)
The "infinitesimal" vector dX from the point P(u v) to the
point Q(u +du, v+ dv) is given by the components:
x du + x d.v'
u \%
X = + d
dX Yy du Y, v (2)
z du + z dv
u v
. . s ox
where the subscripts refer to the partial derivatives X, = 3q etc.

The absolute value of dX is equal to the length of the line ele-
ment ds of the surface. The square of the differential length,

ds2 , can be obtained by scalar multiplication of dX with itself:

2 s L= 2 2
(ds) = (dx- dX) = E(u’ V)du +2F(u’ V)dudv+ G(u’ V)dv (3)




This is the '""first fundamental form' of the surface S with the
Guassian fundamental functions of u and v

2 2

RS MRS RO
(u, v) T * Yo ¥y * Za%v (4)

.2 2 2

Gra g = )5 )T ()

Consider now a second surface S which is represented by
ate

!, e

the vector X with the coordinates x .y ,
(u, v) (u, v) (u, v)

z'P referred to the same parameters u,v as X . The
(u, v) (u, v)

two surfaces S and S are called locally isometrical if in the
points u,v on S the differential length ds is equal to the differ-

ential length ds  in the corresponding point u,v on S" . This

means that for arbitrary directions of propagation A = -:—1-1 the

. v
equation

ds 2 _ Edu’ + 2Fdudv + de2 _ EAZ + 2FA + G 1 (5)
& - % % % - s % %
ds Edu2+2F dudv+c:-dv2 EA2+2F A+ G
must be satisfied. Here Ea< : ) * " are the

F )
(wv) * 2 wv) 9 (uv)
Gaussian fundamental quantities of S referred to the same curvi-
linear surface coordinates u,v to which S is referred. The two

sk
surfaces S and S are entirely isometrical if equation (5) holds
for all points (u, v) and for arbitrary directions X . This is pos-
sible only if the following identities hold:

als
3R

¥ %k b3
E=E, F=F, G=G (6)

Let the surface S be represented by




”

" (wv)

X:}: - £
Y (u, v) (7)
(V)

The necessary and sufficient condition that S” be isometrical
to S is that the components x yﬂ‘ .z satisfy the following
system of partial differential equations:

A, 2 ats 2 1, 2 ’
(x )7+ ()7 4 (z)° = E
* ok + ROk + w ok . F |
o v Yu¥y “a%v (8)
* 2 2 * 2
+ + (z = G
(x) (v,) (z,)
4
where E,F, G are the Gaussian fundamental quantities of the orig-
inal surface S
The entirety of surfaces which are isometrical to the given
surface S is obtained from the entirety of solutions x ym )
z  of the system (8).
Trivial solutions of (8) can be found by rigid body displace-
ments:
x = x + clp
y =yt ¢c,p (92)
z =z + C3P

where ¢, , c, , c, are arbitrary constants and p is the con-

1 2 3
tinuously varying deformation parameter. Another class of iso-
metric deformations is obtained by intersecting the surface by a
plane and reflecting the portion of the surface on one side of the




plane upon the other side, such as shown in figure 1. For instance,
if the reflecting plane is parallel to the xy-plane and is described

by z = p , then the coordinates of the deformed surface are:
X"\ = X
Y. 7 (9b)
z = z forz<p

N
]

2p-z for z > p

This deformation generates normally a ridge along the line of inter-
section traveling on the surface with a change of location p of the
reflecting plane.

Since the system of equations (8) is nonlinear in the derivatives
of its functions, it will be difficult to find general solutions. In
specific cases, it may be convenient to transform system (8) into a
linear system by the following substitutions:

-
H3
X, < VE cos f cos g
s - . 1
Y, VE cos f sin g p (10a)
zu = JE sin f

4
; N
xV = JG cos h cos k
Y in k b 10b
Yv G cos h sin ( )
£ - . h
zV v G sin )

where f are four auxiliary

s , h , k
wv) > Swv) Ywv  Nuv)
functions of u and v

The first and third conditions of system (8) are implicitly
satisfied by equations (10a) and (10b). The second condition in




system (8) yields the algebraic relation:

cos f cos h cos (g-k) + sin f sin h = — (11)

JEG

The integrability conditions for twice differentiable domains
of the surface (i. e., domains excluding slope discontinuities) re-
quire:

X = X

uv vu

R 12
Vv Y (12)
Z ‘ = zZ .

uv vu

Differentiating equations (10a) and (10b) and substituting into
equations (12)

B )
3o (VE cos { cos g) (/G cos h cos k)

o

n

a—a‘; (VE cos f sin g) g?-l (/G cos h sin k) » (13)

a—a- (V E sin f)

The system (13) constitutes three simultaneous differential
equations for the four functions f,g,h,k of u and v which are,
as an additional condition, related by the algebraic equation (11).
These four equations are equivalent to the system (8), and may in
specific cases be more convenient for the purpose of finding non-
trivial, twice differentiable isometric deformations.

3 .
E(\/E-— sin h) )

A general solution will not be attempted here. Instead, the
specific case of an inextensible torus membrane will be investi-
gated.
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ISOMETRIC DEFORMATION OF A CIRCULAR TORUS

A class of deformations for a torus, as shown in figure 3, can
be obtained explicitly by integration of equations (11) and (13). For
the coordinate system shown, the radius vector to a point (u,v) on
the torus is given by

x(u’ v) (R+ pcosu)cosv
X = Yia, v) (R + p cos u) sinv (14)
Z(u, v) P sinu

where R is the distance from the origin 0 to the centerline of the
torus and p is the radius of the meridional circle which generates
the torus by revolution about the z-axis

The curvilinear coordinates u = Constant and v = Constant ,
in this case, represent parallel circles and meridians, respectively;
u is the angle between the radius p and the xy-plane , v is the
central angle between the plane containing the meridian v = Constant
and the xz-plane . The coordinates u and v are equivalent to the
latitude and longitude angles conventionally used as spherical coor-
dinates.

By inspection of the coordinate geometry shown in figure 3, the
line element of the torus is:

ds2 = pzdu2 + (R + p cos u)2 dv2 (15)

and the Gaussian fundamental quantities become by comparing equa-
tion (15) with (3):

E = p2
F = 0 (16)
G = (R + p cos u)2

Solutions for isometric deformations will now be restricted to
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those where parallel circles remain curves in parallel planes

o,

'|<=0
(=, = 0)

With the expressions in equations (16), a set of
equations (11) and (13) can then be given by:

-1 [sinu h
cos
P

solutions of

g (17)

f =
g = - T+ pv
h = 0
m
k = pV+E J

Inserting these solutions into equations (10a) and (10b) yields
\

X = iy sin u cos pv
u
* P _. :
Yy, = o sin u sin pv
¥ s 1 - L sin®
z = P > u
p - y
and N
x; = - (R + p cos u) sin pv
yv = (R + p cos u) cos pv
z = 0
v
4

g (18a)

b (18b)

-k
From these equations the components of X describing the

surface S can be obtained by quadrature:

\
* 1
x = — (R + p cos u) cos pv - ¢
P 1
¥ = 1 (R + cos u) sin c
y = o p pv 2

> (19)

* ~ 1 2
z = pf\/l-—zsmgdg-c?’J
u Y
0




12

The three integration constants c c and c_, represent a

1’ 72 3
rigid body translation which can be disregarded for further discus-
sion.

ats
k54

In this case the surface S 1is generated by revolution of a me-
ridional curve defined in the xz-plane by the parametric relation: |

~

(R + 0o cos u) (

e
b

X =

(u)

u
% 1 2
= 1 - —= si d
2 ) péf’\/ pz sin~ § €J

The integral expression of the second of equations (20) repre-
sents an elliptical integral of the second kind. Values for this inte-
gral, tabulated in reference 5, have been used for the construction
of the meridional curves discussed in the subsequent section.

ol

DISCUSSION OF RESULTS

Solutions for the meridional shapes according to equations (20)
are shown in figure 4 for selected parameters p . If p is any
value between zero and one, the curve consists of segments of real
branches (figure 4(a)). The openings between these branches cor-

. =1 .
respond to parameter values u > sin p (i.e., to those values of u

for which the radicand (1 - —12 sin2 u) is negative). These solutions

p
cannot satisfy the topological restraints for a complete torus sur-

face and will therefore not be considered further.

It will be observed that the meridional curves described by
equations (20) even for p 21 are not necessarily closed; thus the

conditions of equal topological connectivity between S and s is

not satisfied a priori. Closed meridians can be obtained, however,
by reflection. The simplest case is obtained by axial folding, that
is, by reflection on a plane z = Constant through the parallel cir-

T . . . . .
cles u== > - The result is a lenticular section with two ridges, as
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shown in figure 4(c). This reflection can be expressed mathemati-
cally by the convention that the square root under the integral in

equation (20) be taken positive for - —12-7 <u <-7-; and negative for
m 37

gy < —
2 "2

With the convention of simple reflection at u = i% , closed
curves are obtained for all values of p21 . For p=1, a cir-

cle is obtained which generates exactly the original torus (figure
4(b)). As p approaches infinity, the meridional curve degenerates
m

> (figure

. T
into a line covering twice the z-axis from - p > to+p
4(d)).

A set of more general closed meridional sections can be ob-
tained by reflection on planes through u = Constant and u+ 7 = Con-
stant , as shown for the case p = 2 in figure 5(a). Further shapes,
particularly shapes of vanishing cross-sectional area, may be ob-
tained by subsequent reflections on other planes z = Constant as
shown in figure 5(b).

A similar situation exists with respect to the circumferential
coordinate v : Topological connectivity of the surface in circum-

ferential direction requires that the surface S" be periodic in v
with the period 27 . This can be accomplished, for instance, by a
circumferential folding technique as follows:

Consider n equal segments of the deformed torus where the
end meridians of each segment enclose a central angle of

2‘;1'131 . Each segment can now be reflected on a vertical plane

bounded by the z-axis , intersecting the segment at an angle 1 T .
By this reflection, the segment will be folded into itself and the
increment in central angle between end meridians becomes 2—:: . By

joining all n segments, the topological periodicity condition that the
end of the last segment v = 27 coincide with v = 0 is satisfied.
Figure 6 shows a circumferential folding schematic for p=3 , n= 2.

By this method certain domains of the deformed surface are
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covered by the membrane in multiple layers. The minimum number
of layers is three for 1 <p <3 ., For p =3 , the whole torus do-
main is triply covered. Further increase of 3 < p <5 will require
quintuple coverage of certain domains up to p=5 , etc.

Finally, it should be remarked that the necessity for circum-
ferential folding disappears if the torus can be cut along any merid-
ian (torus segment). Such a structure may be folded into a tight
scroll of vanishing enclosed volume and frontal area.

EXPERIMENTAL VERIFICATION

Qualitative verification of the theoretical data presented has
been obtained by experimentation with two torus models. For this
purpose, a full and a quarter torus have been fabricated with the
following overall dimensions:

R 19. 5"

n

p = 3.5"

The method of fabrication consists of winding two overlapping
layers of 2. 5 mil thickness adhesive-coated tape on an inflatable
mandrel made from a standard-size 670-15 automotive inner tube.
The tape is applied in such a manner that the adhesive-coated side
of the two layers are in mutual contact. This process results in an
average wall thickness of 7 mils. After completion of the winding
process, the rubber tube is removed through a slit, and the slit is
repaired for the closed torus by an overlay of tape. The models
fabricated in this fashion approximate closely the idealized condi-
tions of inextensible membranes.

The two torus models are shown in figures 7 and 8 in their ex-
panded condition. Figure 9 shows the folded shape of the complete
torus with circumferential and axial folding according to the folding
schematic shown in figures 5(b) and 6. Figure 10 shows the quarter
torus segment folded into a closed shell (p = 4) exhibiting the pre-
dicted lenticular meridional shape. Figure 11 shows the torus seg-
ment in a tight scroll according to figure 4(d).

An interesting variant of folding deformation deviating from
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rotational symmetry is shown in figure 12. This shape involves de-
formation of the original parallel circles u = Constant into leafed
curves resembling epicycloids. The reverse fold required at the
cusps between leafs is topologically possible since the cross-section
at these meridians degenerates into a double line at the reverse fold
locations. While, in principle, the leafed shape is possible for a
completely closed torus, attempts to produce this pattern from the
original full torus were not successful, indicating that no continuous

isometric and topologically invariant set S" exists between the
leafed "epicycloid'" shape and the original complete circular torus.

CONCLUDING REMARKS

It is clear that, for instance, the circumferential folding tech-
nique shown in figure 6 in its pure form is possible only for infin-
itely thin membranes. For practical structural shells of finite
thickness, such a problem can be overcome, for instance, by a pe-
riodic variation of the torus cross-section, allowing finite spacing
of the concentric layers. Furthermore, axial folding involving con-
cave folds such as shown in figures 5(b) and 9 can be used to reduce
the difficulty in circumferential folding.

A second, possibly more serious, practical difficulty is the
presence of stationary and traveling cross folds (i. e. folds crossing
ridges), as indicated in figure 6. Practical implementation may re-
quire specific provisions in the wall design allowing for finite mem-
brane strains in the domains occupied by cross folds. Other possi-
bilities may be provided by different folding patterns, such as those
of the type shown in figure 12, which may eliminate traveling cross
folds. ‘

Fuither study should be directed toward isometric deformations
that do not necessarily retain rotational symmetry. Also of interest
will be the expansion of the general theory to shells which admit
finite membrane strains. Such an expansion will be particularly use-
ful for a study of local fold and cross fold areas.

Astro Research Corporation,
Santa Barbara, California, July 20, 1961.
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Figure 1. -

Admissible

Isometric Deformation of Torus Membrane by
Reflection on Intersecting Planes.
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Z
‘ u=Constant
v=Constant
(utdu, v+dv)
/ , -
/x(u: V)
x

Figure 2. - Coordinate System for General Surface.
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(R+pcosu)dv

Figure 3.- Torus Coordinates.
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(a)

Figure 5. - Closed Isometric, Meridional Torus Cross-Sections
Obtained by Reflection.
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Figure 6. -

Circumferential Folding Schematic of Torus for
n=2 , p=3
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Figure 7. - Full Torus - Expanded.

Figure 8. - Quarter Torus - Expanded.
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Figure 12.- Full Torus - Folded (Epicycloid).

NASA-Langley, 1962 D=1690
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